Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 375
1.
Mol Biol Rep ; 51(1): 553, 2024 Apr 20.
Article En | MEDLINE | ID: mdl-38642158

BACKGROUND: The metastasis accounts for most deaths from breast cancer (BRCA). Understanding the molecular mechanisms of BRCA metastasis is urgently demanded. Flap Endonuclease 1 (FEN1), a pivotal factor in DNA metabolic pathways, contributes to tumor growth and drug resistance, however, little is known about the role of FEN1 in BRCA metastasis. METHODS AND RESULTS: In this study, FEN1 expression and its clinical correlation in BRCA were investigated using bioinformatics, showing being upregulated in BRCA samples and significant relationships with tumor stage, node metastasis, and prognosis. Immunohistochemistry (IHC) staining of local BRCA cohort indicated that the ratio of high FEN1 expression in metastatic BRCA tissues rose over that in non-metastatic tissues. The assays of loss-of-function and gain-of-function showed that FEN1 enhanced BRCA cell proliferation, migration, invasion, xenograft growth as well as lung metastasis. It was further found that FEN1 promoted the aggressive behaviors of BRCA cells via Signal Transducer and Activator of Transcription 3 (STAT3) activation. Specifically, the STAT3 inhibitor Stattic thwarted the FEN1-induced enhancement of migration and invasion, while the activator IL-6 rescued the decreased migration and invasion caused by FEN1 knockdown. Additionally, overexpression of FEN1 rescued the inhibitory effect of nuclear factor-κB (NF-κB) inhibitor BAY117082 on phosphorylated STAT3. Simultaneously, the knockdown of FEN1 attenuated the phosphorylation of STAT3 promoted by the NF-κB activator tumor necrosis factor α (TNF-α). CONCLUSIONS: These results indicate a novel mechanism that NF-κB-driven FEN1 contributes to promoting BRCA growth and metastasis by STAT3 activation.


Breast Neoplasms , Flap Endonucleases , STAT3 Transcription Factor , Female , Humans , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Flap Endonucleases/genetics , Flap Endonucleases/metabolism , NF-kappa B/metabolism , STAT3 Transcription Factor/genetics , STAT3 Transcription Factor/metabolism , Animals , Mice
2.
Medicine (Baltimore) ; 103(13): e37517, 2024 Mar 29.
Article En | MEDLINE | ID: mdl-38552056

The overexpression of Flap endonuclease 1 (FEN1) has been implicated in drug resistance and prognosis across various cancer types. However, the precise role of FEN1 in colon cancer remains to be fully elucidated. In this study, we employed comprehensive datasets from The Cancer Genome Atlas, Gene Expression Omnibus, and Human Protein Atlas to examine FEN1 expression and assess its correlation with clinical pathology and prognosis in colon cancer. We utilized the pRRophetic algorithm to evaluate drug sensitivity and performed differential expression analysis to identify genes associated with FEN1-mediated drug sensitivity. Gene set enrichment analysis was conducted to further investigate these genes. Additionally, single-cell sequencing analysis was employed to explore the relationship between FEN1 expression and functional states. Cox regression analysis was implemented to construct a prognostic model, and a nomogram for prognosis was developed. Our analysis of The Cancer Genome Atlas and Gene Expression Omnibus datasets revealed a significant upregulation of FEN1 in colon cancer. However, while FEN1 expression showed no notable correlation with prognosis, it displayed associations with metastasis. Single-cell sequencing analysis further confirmed a positive correlation between FEN1 expression and colon cancer metastasis. Furthermore, we detected marked discrepancies in drug responsiveness between the High_FEN1 and Low_FEN1 groups, identifying 342 differentially expressed genes. Enrichment analysis showed significant suppression in processes related to DNA replication, spliceosome, and cell cycle pathways in the Low_FEN1 group, while the calcium signaling pathway, cAMP signaling pathway, and other pathways were activated. Of the 197 genes differentially expressed and strongly linked to FEN1 expression, 39 were significantly implicated in colon cancer prognosis. Finally, we constructed a risk signature consisting of 5 genes, which, when combined with drug treatment and pathological staging, significantly improved the prediction of colon cancer prognosis. This study offers novel insights into the interplay among FEN1 expression levels, colon cancer metastatic potential, and sensitivity to therapeutic agents. Furthermore, we successfully developed a multi-gene prognostic risk signature derived from FEN1.


Colonic Neoplasms , Flap Endonucleases , Humans , Flap Endonucleases/genetics , Flap Endonucleases/metabolism , Colonic Neoplasms/drug therapy , Colonic Neoplasms/genetics , Colonic Neoplasms/metabolism , Prognosis , Drug Resistance , Computational Biology
3.
EMBO J ; 43(6): 1015-1042, 2024 Mar.
Article En | MEDLINE | ID: mdl-38360994

Targeting poly(ADP-ribose) glycohydrolase (PARG) is currently explored as a therapeutic approach to treat various cancer types, but we have a poor understanding of the specific genetic vulnerabilities that would make cancer cells susceptible to such a tailored therapy. Moreover, the identification of such vulnerabilities is of interest for targeting BRCA2;p53-deficient tumors that have acquired resistance to poly(ADP-ribose) polymerase inhibitors (PARPi) through loss of PARG expression. Here, by performing whole-genome CRISPR/Cas9 drop-out screens, we identify various genes involved in DNA repair to be essential for the survival of PARG;BRCA2;p53-deficient cells. In particular, our findings reveal EXO1 and FEN1 as major synthetic lethal interactors of PARG loss. We provide evidence for compromised replication fork progression, DNA single-strand break repair, and Okazaki fragment processing in PARG;BRCA2;p53-deficient cells, alterations that exacerbate the effects of EXO1/FEN1 inhibition and become lethal in this context. Since this sensitivity is dependent on BRCA2 defects, we propose to target EXO1/FEN1 in PARPi-resistant tumors that have lost PARG activity. Moreover, EXO1/FEN1 targeting may be a useful strategy for enhancing the effect of PARG inhibitors in homologous recombination-deficient tumors.


Neoplasms , Tumor Suppressor Protein p53 , Humans , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , DNA Repair , DNA Damage , Neoplasms/drug therapy , Neoplasms/genetics , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Glycoside Hydrolases/genetics , Glycoside Hydrolases/metabolism , Flap Endonucleases/genetics , Flap Endonucleases/metabolism , Flap Endonucleases/therapeutic use , Exodeoxyribonucleases/genetics , DNA Repair Enzymes/genetics
4.
Int J Mol Sci ; 25(4)2024 Feb 09.
Article En | MEDLINE | ID: mdl-38396787

To improve breast cancer treatment and to enable new strategies for therapeutic resistance, therapeutic targets are constantly being studied. Potential targets are proteins of DNA repair and replication and genomic integrity, such as Flap Endonuclease 1 (FEN1). This study investigated the effects of FEN1 inhibitor FEN1-IN-4 in combination with ionizing radiation on cell death, clonogenic survival, the cell cycle, senescence, doubling time, DNA double-strand breaks and micronuclei in breast cancer cells, breast cells and healthy skin fibroblasts. Furthermore, the variation in the baseline FEN1 level and its influence on treatment prognosis was investigated. The cell lines show specific response patterns in the aspects studied and have heterogeneous baseline FEN1 levels. FEN1-IN-4 has cytotoxic, cytostatic and radiosensitizing effects, expressed through increasing cell death by apoptosis and necrosis, G2M share, senescence, double-strand breaks and a reduced survival fraction. Nevertheless, some cells are less affected by the cytotoxicity and fibroblasts show a rather limited response. In vivo, high FEN1 mRNA expression worsens the prognosis of breast cancer patients. Due to the increased expression in breast cancer tissue, FEN1 could represent a new tumor and prognosis marker and FEN1-IN-4 may serve as a new potent agent in personalized medicine and targeted breast cancer therapy.


Antineoplastic Agents , Breast Neoplasms , Flap Endonucleases , Female , Humans , Antineoplastic Agents/pharmacology , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/pathology , DNA Repair , Flap Endonucleases/genetics , Flap Endonucleases/metabolism , Prognosis
5.
Dig Liver Dis ; 56(4): 695-704, 2024 Apr.
Article En | MEDLINE | ID: mdl-37648642

PURPOSE: Cholangiocarcinoma (CHOL) comprises a cluster of highly heterogeneous malignant biliary tumors. Flap endonuclease-1 (FEN1) is a member of the Rad2 structure-specific nuclease family. This study aimed to explore the biological functions and mechanisms of FEN1 in CHOL. METHODS: FEN1 expression was analyzed in tissues of patients with CHOL and FEN1 mutations. We observe the influence of FEN1 on cellular proliferation, migration, and invasion, as well as on DNA damage repair and glycolysis. Western blotting was performed to determine the regulatory mechanism of FEN1 in CHOL progression. RESULTS: FEN1 was highly expressed in the cancer tissues of CHOL patients. The high mutation rate of FEN1 in CHOL tissues was mainly due to the amplified repeats. FEN1 promotes the proliferation, migration, and invasion of HUCCT1 and QBC939 cells. In addition, FEN1 induced DNA damage repair and aerobic glycolysis in CHOL cells. FEN1 also promoted xenograft tumor growth in vivo. Moreover, we showed that FEN1 mediated the epithelial-mesenchymal transition (EMT) of CHOL. FEN1-mediated EMT was found to be transduced by the Wnt/ß-catenin signaling pathway. CONCLUSION: FEN1 was significantly overexpressed in CHOL tissues, and FEN1 regulates the progression of CHOL through the Wnt/ß-catenin signaling pathway.


Bile Duct Neoplasms , Cholangiocarcinoma , Humans , Wnt Signaling Pathway/genetics , Flap Endonucleases/genetics , Flap Endonucleases/metabolism , Cell Line, Tumor , Cholangiocarcinoma/genetics , Bile Duct Neoplasms/genetics , Bile Ducts, Intrahepatic , Epithelial-Mesenchymal Transition/genetics , Cell Proliferation/genetics , beta Catenin/genetics , beta Catenin/metabolism , Gene Expression Regulation, Neoplastic , Cell Movement
6.
Immunology ; 170(3): 388-400, 2023 11.
Article En | MEDLINE | ID: mdl-37501391

It is well known that chimeric antigen receptor T-cell immunotherapy (CAR-T-cell immunotherapy) has excellent therapeutic effect in haematological tumours, but it still faces great challenges in solid tumours, including inefficient T-cell tumour infiltration and poor functional persistence. Flap structure-specific endonuclease 1 (FEN1), highly expressed in a variety of cancer cells, plays an important role in both DNA replication and repair. Previous studies have reported that FEN1 inhibition is an effective strategy for cancer treatment. Therefore, we hypothesized whether FEN1 inhibitors combined with CAR-T-cell immunotherapy would have a stronger killing effect on solid tumours. The results showed that low dose of FEN1 inhibitors SC13 could induce an increase of double-stranded broken DNA (dsDNA) in the cytoplasm. Cytosolic dsDNA can activate the cyclic GMP-AMP synthase-stimulator of interferon gene signalling pathway and increase the secretion of chemokines. In vivo, under the action of FEN1 inhibitor SC13, more chemokines were produced at solid tumour sites, which promoted the infiltration of CAR-T cells and improved anti-tumour immunity. These findings suggest that FEN1 inhibitors could enable CAR-T cells to overcome poor T-cell infiltration and improve the treatment of solid tumours.


Neoplasms , Humans , Signal Transduction , DNA , T-Lymphocytes/metabolism , Nucleotidyltransferases/genetics , Chemokines , Flap Endonucleases/genetics , Flap Endonucleases/metabolism
7.
Cancer Med ; 12(14): 15317-15336, 2023 07.
Article En | MEDLINE | ID: mdl-37326412

PURPOSE: Flap endonuclease 1 (FEN1) is highly upregulated in prostate cancer and promotes the growth of prostate cancer cells. Androgen receptor (AR) is the most critical determinant of the occurrence, progression, metastasis, and treatment of prostate cancer. However, the effect of FEN1 on docetaxel (DTX) sensitivity and the regulatory mechanisms of AR on FEN1 expression in prostate cancer need to be further studied. METHODS: Bioinformatics analyses were performed using data from the Cancer Genome Atlas and the Gene Expression Omnibus. Prostate cancer cell lines 22Rv1 and LNCaP were used. FEN1 siRNA, FEN1 overexpression plasmid, and AR siRNA were transfected into cells. Biomarker expression was evaluated by immunohistochemistry and Western blotting. Apoptosis and the cell cycle were explored using flow cytometry analysis. Luciferase reporter assay was performed to verify the target relationship. Xenograft assays were conducted using 22Rv1 cells to evaluate the in vivo conclusions. RESULTS: Overexpression of FEN1 inhibited cell apoptosis and cell cycle arrest in the S phase induced by DTX. AR knockdown enhanced DTX-induced cell apoptosis and cell cycle arrest at the S phase in prostate cancer cells, which was attenuated by FEN1 overexpression. In vivo experiments showed that overexpression of FEN1 significantly increased tumour growth and weakened the inhibitory effect of DTX on prostate tumour growth, while AR knockdown enhance the sensitivity of DTX to prostate tumour. AR knockdown resulted in FEN1, pho-ERK1/2, and pho-ELK1 downregulation, and the luciferase reporter assay confirmed that ELK1 can regulate the transcription of FEN1. CONCLUSION: Collectively, our studies demonstrate that AR knockdown improves the DTX sensitivity of prostate cancer cells by downregulating FEN1 through the ERK/ELK1 signalling pathway.


Prostatic Neoplasms , Receptors, Androgen , Male , Humans , Receptors, Androgen/genetics , Receptors, Androgen/metabolism , MAP Kinase Signaling System , Flap Endonucleases/genetics , Flap Endonucleases/metabolism , Cell Proliferation , Cell Line, Tumor , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Docetaxel/pharmacology , RNA, Small Interfering/metabolism , ets-Domain Protein Elk-1/genetics , ets-Domain Protein Elk-1/metabolism
8.
PLoS Genet ; 19(5): e1010585, 2023 05.
Article En | MEDLINE | ID: mdl-37146086

The current model for Okazaki fragment maturation in bacteria invokes RNA cleavage by RNase H, followed by strand displacement synthesis and 5' RNA flap removal by DNA polymerase I (Pol I). RNA removal by Pol I is thought to occur through the 5'-3' flap endo/exonuclease (FEN) domain, located in the N-terminus of the protein. In addition to Pol I, many bacteria encode a second, Pol I-independent FEN. The contribution of Pol I and Pol I-independent FENs to DNA replication and genome stability remains unclear. In this work we purified Bacillus subtilis Pol I and FEN, then assayed these proteins on a variety of RNA-DNA hybrid and DNA-only substrates. We found that FEN is far more active than Pol I on nicked double-flap, 5' single flap, and nicked RNA-DNA hybrid substrates. We show that the 5' nuclease activity of B. subtilis Pol I is feeble, even during DNA synthesis when a 5' flapped substrate is formed modeling an Okazaki fragment intermediate. Examination of Pol I and FEN on DNA-only substrates shows that FEN is more active than Pol I on most substrates tested. Further experiments show that ΔpolA phenotypes are completely rescued by expressing the C-terminal polymerase domain while expression of the N-terminal 5' nuclease domain fails to complement ΔpolA. Cells lacking FEN (ΔfenA) show a phenotype in conjunction with an RNase HIII defect, providing genetic evidence for the involvement of FEN in Okazaki fragment processing. With these results, we propose a model where cells remove RNA primers using FEN while upstream Okazaki fragments are extended through synthesis by Pol I. Our model resembles Okazaki fragment processing in eukaryotes, where Pol δ catalyzes strand displacement synthesis followed by 5' flap cleavage using FEN-1. Together our work highlights the conservation of ordered steps for Okazaki fragment processing in cells ranging from bacteria to human.


Bacillus subtilis , Flap Endonucleases , Humans , Bacillus subtilis/genetics , Bacillus subtilis/metabolism , Flap Endonucleases/genetics , Flap Endonucleases/metabolism , DNA/genetics , DNA Replication/genetics , RNA/metabolism , Exonucleases/genetics
9.
Analyst ; 148(12): 2732-2738, 2023 Jun 12.
Article En | MEDLINE | ID: mdl-37232199

The structure-specific endonuclease flap endonuclease 1 (FEN1) is an essential functional protein in DNA replication and genome stability, and it has been identified as a promising biomarker and drug target for multiple cancers. Herein, we develop a target-activated T7 transcription circuit-mediated multiple cycling signal amplification platform for monitoring FEN1 activity in cancer cells. In the presence of FEN1, the flapped dumbbell probe is cleaved to generate a free 5' flap single-stranded DNA (ssDNA) with the 3'-OH terminus. The ssDNA can hybridize with the T7 promoter-bearing template probe to trigger the extension with the aid of Klenow fragment (KF) DNA polymerase. Upon the addition of T7 RNA polymerase, an efficient T7 transcription amplification reaction is initiated to produce abundant single-stranded RNAs (ssRNAs). The ssRNA can hybridize with a molecular beacon to form an RNA/DNA heteroduplex that can be selectively digested by DSN to generate an enhanced fluorescence signal. This method exhibits good specificity and high sensitivity with a limit of detection (LOD) of 1.75 × 10-6 U µL-1. Moreover, it can be applied for the screening of FEN1 inhibitors and the monitoring of FEN1 activity in human cells, holding great potential in drug discovery and clinical diagnosis.


Flap Endonucleases , Neoplasms , Humans , Flap Endonucleases/genetics , Flap Endonucleases/metabolism , DNA/genetics , DNA/metabolism , DNA Replication , DNA Repair , Neoplasms/genetics
10.
Int J Oral Sci ; 15(1): 17, 2023 04 25.
Article En | MEDLINE | ID: mdl-37185662

Oral squamous cell carcinoma (OSCC) escape from the immune system is mediated through several immunosuppressive phenotypes that are critical to the initiation and progression of tumors. As a hallmark of cancer, DNA damage repair is closely related to changes in the immunophenotypes of tumor cells. Although flap endonuclease-1 (FEN1), a pivotal DNA-related enzyme is involved in DNA base excision repair to maintain the stability of the cell genome, the correlation between FEN1 and tumor immunity has been unexplored. In the current study, by analyzing the clinicopathological characteristics of FEN1, we demonstrated that FEN1 overexpressed and that an inhibitory immune microenvironment was established in OSCC. In addition, we found that downregulating FEN1 inhibited the growth of OSCC tumors. In vitro studies provided evidence that FEN1 knockdown inhibited the biological behaviors of OSCC and caused DNA damage. Performing multiplex immunohistochemistry (mIHC), we directly observed that the acquisition of critical immunosuppressive phenotypes was correlated with the expression of FEN1. More importantly, FEN1 directly or indirectly regulated two typical immunosuppressive phenotype-related proteins human leukocyte antigen (HLA-DR) and programmed death receptor ligand 1 (PD-L1), through the interferon-gamma (IFN-γ)/janus kinase (JAK)/signal transducer and activator transcription 1 (STAT1) pathway. Our study highlights a new perspective on FEN1 action for the first time, providing theoretical evidence that it may be a potential immunotherapy target for OSCC.


Carcinoma, Squamous Cell , Head and Neck Neoplasms , Mouth Neoplasms , Humans , Carcinoma, Squamous Cell/pathology , DNA , Down-Regulation , Flap Endonucleases/genetics , Flap Endonucleases/metabolism , Interferon-gamma/pharmacology , Interferon-gamma/metabolism , Mouth Neoplasms/pathology , Phenotype , Squamous Cell Carcinoma of Head and Neck , Tumor Microenvironment , Janus Kinases/metabolism
11.
Protein Pept Lett ; 30(7): 597-607, 2023.
Article En | MEDLINE | ID: mdl-37254539

BACKGROUND: Flap endonuclease 1 (FEN1), well known for its structural-specific nuclease, possessing 5'-flap endonuclease and 5'-3' exonuclease activities, is mainly involved in DNA replication and repair. Protein lysine acetylation is an important posttranslational modification that could regulate numerous proteins' activity, subcellular localization, protein-protein interaction etc., and influences many biological processes. Our previous studies on integrated succinylome profiles found that succinylation and acetylation levels of FEN1 would change under different conditions. Succinylation at FEN1 Lys200 site results in the accumulation of damaged DNA and increased susceptibility to fork-stalling agents. The interplay with other forms of modification could affects its protein interaction affinity and thus contribute to genome stability. OBJECTIVE: This article studied the biological role of FEN1 by acyl modification in HeLa cells. METHOD: In order to explore the function of FEN1 acylation in cells, we mimicked the presence or absence of acetylation or succinylation by mutating key amino acids to glutamic acid and glutamine. We carried out a series of experiments including cell cycle, MTS, enzyme kinetics measurements, immunofluorescence and so on. RESULTS: The absence of acylation of FEN1 leads to the blocked cell cycle process and the reduced efficiency of FEN1 on its DNA substrates, affecting the interaction of FEN1 with both repair and replication related proteins and thus its role in the repair of DNA damage. CONCLUSION: We have verified acyl groups could modify Lys125, Lys252 and Lys254 of FEN1. Acylation level of these three is important for enzyme activity, cell proliferation and DNA damage response, thus contributing to genome stability.


DNA Repair , DNA , Humans , HeLa Cells , DNA/metabolism , Protein Processing, Post-Translational , Genomic Instability , Cell Proliferation , DNA Replication , Flap Endonucleases/genetics , Flap Endonucleases/metabolism
12.
PLoS Biol ; 21(4): e3002085, 2023 04.
Article En | MEDLINE | ID: mdl-37079643

In most sexually reproducing organisms crossing over between chromosome homologs during meiosis is essential to produce haploid gametes. Most crossovers that form in meiosis in budding yeast result from the biased resolution of double Holliday junction (dHJ) intermediates. This dHJ resolution step involves the actions of Rad2/XPG family nuclease Exo1 and the Mlh1-Mlh3 mismatch repair endonuclease. Here, we provide genetic evidence in baker's yeast that Exo1 promotes meiotic crossing over by protecting DNA nicks from ligation. We found that structural elements in Exo1 that interact with DNA, such as those required for the bending of DNA during nick/flap recognition, are critical for its role in crossing over. Consistent with these observations, meiotic expression of the Rad2/XPG family member Rad27 partially rescued the crossover defect in exo1 null mutants, and meiotic overexpression of Cdc9 ligase reduced the crossover levels of exo1 DNA-binding mutants to levels that approached the exo1 null. In addition, our work identified a role for Exo1 in crossover interference. Together, these studies provide experimental evidence for Exo1-protected nicks being critical for the formation of meiotic crossovers and their distribution.


Saccharomyces cerevisiae Proteins , Crossing Over, Genetic , DNA Breaks, Single-Stranded , DNA, Cruciform , Flap Endonucleases/genetics , Flap Endonucleases/metabolism , Meiosis/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism
13.
Nucleic Acids Res ; 51(9): 4398-4414, 2023 05 22.
Article En | MEDLINE | ID: mdl-36999631

The long non-coding telomeric RNA transcript TERRA, in the form of an RNA-DNA duplex, regulates telomere recombination. In a screen for nucleases that affects telomere recombination, mutations in DNA2, EXO1, MRE11 and SAE2 cause severe delay in type II survivor formation, indicating that type II telomere recombination is mediated through a mechanism similar to repairing double-strand breaks. On the other hand, mutation in RAD27 results in early formation of type II recombination, suggesting that RAD27 acts as a negative regulator in telomere recombination. RAD27 encodes a flap endonuclease that plays a role in DNA metabolism, including replication, repair and recombination. We demonstrate that Rad27 suppresses the accumulation of the TERRA-associated R-loop and selectively cleaves TERRA of R-loop and double-flapped structures in vitro. Moreover, we show that Rad27 negatively regulates single-stranded C-rich telomeric DNA circles (C-circles) in telomerase-deficient cells, revealing a close correlation between R-loop and C-circles during telomere recombination. These results demonstrate that Rad27 participates in telomere recombination by cleaving TERRA in the context of an R-loop or flapped RNA-DNA duplex, providing mechanistic insight into how Rad27 maintains chromosome stability by restricting the accumulation of the R-loop structure within the genome.


Flap Endonucleases , R-Loop Structures , Saccharomyces cerevisiae Proteins , DNA Helicases/genetics , DNA, Single-Stranded , Flap Endonucleases/genetics , Flap Endonucleases/metabolism , Recombination, Genetic , RNA/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Telomere/genetics , Telomere/metabolism
14.
Biosens Bioelectron ; 220: 114859, 2023 Jan 15.
Article En | MEDLINE | ID: mdl-36368142

Flap endonuclease 1 (FEN1) is an endonuclease that specially removes 5' single-stranded overhang of branched duplex DNA (5' flap). While FEN1 is essential in various DNA metabolism pathways for preventing the malignant transformation of cells, an unusual expression of FEN1 is often associated with tumor progression, making it a potential biomarker for cancer diagnosis and treatment. Here we report a multimodal detection of FEN1 activity based on CRISPR/Cas12a trans-cleavage of single-strand DNA oligonucleotides (ssDNA). A dumbbell DNA structure with a 5' flap was designed, which can be cleaved by the FEN1 and the dumbbell DNA is subsequently ligated by T4 DNA ligase. The resulting closed duplex DNA contains a specific protospacer adjacent motif (PAM) that activates trans-cleavage of ssDNA after binding to CRISPR/Cas12a-crRNA. The trans-cleavage is activated only once and is independent to length or sequence of the ssDNA, which allows efficient signal amplification and multimodal signals such as fluorescence or cleaved connection between magnetic microparticles (MMPs) and polystyrene microparticles (PMPs) that alters solution turbidity after magnetic separation. In addition, by loading the particle solution into a microfluidic chip, unconnected PMPs escaping from a magnetic separator are amassed at the particle dam, enabling a visible PMP accumulation length proportional to the FEN1 activity. This multimodal detection is selective to FEN1 and achieves a low limit of detection (LOD) with only 40 min of reaction time. Applying to cell lysates, higher FEN1 activity was detected in breast cancer cells, suggesting a great potential for cancer diagnosis.


Biosensing Techniques , Flap Endonucleases , Flap Endonucleases/genetics , Flap Endonucleases/metabolism , Oligonucleotides , CRISPR-Cas Systems/genetics , DNA, Single-Stranded , DNA/chemistry
15.
Trends Cell Biol ; 33(3): 221-234, 2023 03.
Article En | MEDLINE | ID: mdl-35879148

Unsuccessful processing of Okazaki fragments leads to the accumulation of DNA breaks which are associated with many human diseases including cancer and neurodegenerative disorders. Recently, Okazaki fragment maturation (OFM) has received renewed attention regarding how unprocessed Okazaki fragments are sensed and repaired, and how inappropriate OFM impacts on genome stability and cell viability, especially in cancer cells. We provide an overview of the highly efficient and faithful canonical OFM pathways and their regulation of genomic integrity and cell survival. We also discuss how cells induce alternative error-prone OFM processes to promote cell survival in response to environmental stresses. Such stress-induced OFM processes may be important mechanisms driving mutagenesis, cellular evolution, and resistance to radio/chemotherapy and targeted therapeutics in human cancers.


DNA Replication , Flap Endonucleases , Humans , Flap Endonucleases/genetics , Flap Endonucleases/metabolism , DNA/metabolism , Cell Proliferation/genetics
16.
Spectrochim Acta A Mol Biomol Spectrosc ; 284: 121760, 2023 Jan 05.
Article En | MEDLINE | ID: mdl-36030671

Specific and sensitive detection of flap endonuclease 1 (FEN1), an enzyme biomarker involved in DNA replications and several metabolic pathways, is of high values for the diagnosis of various cancers. In this work, a fluorescence strategy based on transcriptional amplification of lighting-up aptamers for label-free, low background and sensitive monitoring of FEN1 is developed. FEN1 cleaves the 5' flap of the DNA complex probe with double flaps to form a notched dsDNA, which is ligated by T4 DNA ligase to yield fully complementary dsDNA. Subsequently, T7 RNA polymerase binds the promoter region to initiate cyclic transcriptional generation of many RNA aptamers that associate with the malachite green dye to yield highly amplified fluorescence for detecting FEN1 with detection limit as low as 0.22 pM in a selective way. In addition, the method can achieve diluted serum monitoring of low concentrations of FEN1, exhibiting its potential for the diagnosis of early-stage cancers.


Aptamers, Nucleotide , Neoplasms , DNA/genetics , DNA/metabolism , DNA Ligases , DNA Probes , Flap Endonucleases/genetics , Flap Endonucleases/metabolism , Humans
17.
Article En | WPRIM | ID: wpr-982475

Oral squamous cell carcinoma (OSCC) escape from the immune system is mediated through several immunosuppressive phenotypes that are critical to the initiation and progression of tumors. As a hallmark of cancer, DNA damage repair is closely related to changes in the immunophenotypes of tumor cells. Although flap endonuclease-1 (FEN1), a pivotal DNA-related enzyme is involved in DNA base excision repair to maintain the stability of the cell genome, the correlation between FEN1 and tumor immunity has been unexplored. In the current study, by analyzing the clinicopathological characteristics of FEN1, we demonstrated that FEN1 overexpressed and that an inhibitory immune microenvironment was established in OSCC. In addition, we found that downregulating FEN1 inhibited the growth of OSCC tumors. In vitro studies provided evidence that FEN1 knockdown inhibited the biological behaviors of OSCC and caused DNA damage. Performing multiplex immunohistochemistry (mIHC), we directly observed that the acquisition of critical immunosuppressive phenotypes was correlated with the expression of FEN1. More importantly, FEN1 directly or indirectly regulated two typical immunosuppressive phenotype-related proteins human leukocyte antigen (HLA-DR) and programmed death receptor ligand 1 (PD-L1), through the interferon-gamma (IFN-γ)/janus kinase (JAK)/signal transducer and activator transcription 1 (STAT1) pathway. Our study highlights a new perspective on FEN1 action for the first time, providing theoretical evidence that it may be a potential immunotherapy target for OSCC.


Humans , Carcinoma, Squamous Cell/pathology , DNA , Down-Regulation , Flap Endonucleases/metabolism , Head and Neck Neoplasms , Interferon-gamma/metabolism , Mouth Neoplasms/pathology , Phenotype , Squamous Cell Carcinoma of Head and Neck , Tumor Microenvironment , Janus Kinases/metabolism
18.
Nat Commun ; 13(1): 7833, 2022 12 20.
Article En | MEDLINE | ID: mdl-36539424

During lagging strand synthesis, DNA Ligase 1 (Lig1) cooperates with the sliding clamp PCNA to seal the nicks between Okazaki fragments generated by Pol δ and Flap endonuclease 1 (FEN1). We present several cryo-EM structures combined with functional assays, showing that human Lig1 recruits PCNA to nicked DNA using two PCNA-interacting motifs (PIPs) located at its disordered N-terminus (PIPN-term) and DNA binding domain (PIPDBD). Once Lig1 and PCNA assemble as two-stack rings encircling DNA, PIPN-term is released from PCNA and only PIPDBD is required for ligation to facilitate the substrate handoff from FEN1. Consistently, we observed that PCNA forms a defined complex with FEN1 and nicked DNA, and it recruits Lig1 to an unoccupied monomer creating a toolbelt that drives the transfer of DNA to Lig1. Collectively, our results provide a structural model on how PCNA regulates FEN1 and Lig1 during Okazaki fragments maturation.


DNA Polymerase III , DNA Replication , Humans , Proliferating Cell Nuclear Antigen/metabolism , DNA Polymerase III/metabolism , Ligases/metabolism , DNA/metabolism , Flap Endonucleases/metabolism , DNA Ligase ATP/genetics , DNA Ligase ATP/metabolism
19.
Nat Commun ; 13(1): 6973, 2022 11 15.
Article En | MEDLINE | ID: mdl-36379932

The final steps of lagging strand synthesis induce maturation of Okazaki fragments via removal of the RNA primers and ligation. Iterative cycles between Polymerase δ (Polδ) and Flap endonuclease-1 (FEN1) remove the primer, with an intermediary nick structure generated for each cycle. Here, we show that human Polδ is inefficient in releasing the nick product from FEN1, resulting in non-processive and remarkably slow RNA removal. Ligase 1 (Lig1) can release the nick from FEN1 and actively drive the reaction toward ligation. These mechanisms are coordinated by PCNA, which encircles DNA, and dynamically recruits Polδ, FEN1, and Lig1 to compete for their substrates. Our findings call for investigating additional pathways that may accelerate RNA removal in human cells, such as RNA pre-removal by RNase Hs, which, as demonstrated herein, enhances the maturation rate ~10-fold. They also suggest that FEN1 may attenuate the various activities of Polδ during DNA repair and recombination.


DNA Replication , Flap Endonucleases , Humans , DNA/metabolism , DNA Polymerase III/genetics , DNA Polymerase III/metabolism , Flap Endonucleases/genetics , Flap Endonucleases/metabolism , RNA/metabolism
20.
Biomolecules ; 12(7)2022 07 20.
Article En | MEDLINE | ID: mdl-35883563

DNA damage repair plays a key role in maintaining genomic stability and integrity. Flap endonuclease 1 (FEN1) is a core protein in the base excision repair (BER) pathway and participates in Okazaki fragment maturation during DNA replication. Several studies have implicated FEN1 in the regulation of other DNA repair pathways, including homologous recombination repair (HRR) and non-homologous end joining (NHEJ). Abnormal expression or mutation of FEN1 in cells can cause a series of pathological responses, leading to various diseases, including cancers. Moreover, overexpression of FEN1 contributes to drug resistance in several types of cancers. All this supports the hypothesis that FEN1 could be a therapeutic target for cancer treatment. Targeting FEN1 has been verified as an effective strategy in mono or combined treatment of cancer. Small-molecule compounds targeting FEN1 have also been developed and detected in cancer regression. In this review, we summarize the recent development of small-molecule inhibitors targeting FEN1 in recent years, thereby expanding their therapeutic potential and application.


Flap Endonucleases , Neoplasms , DNA Repair , DNA Replication , Flap Endonucleases/metabolism , Genomic Instability , Humans , Neoplasms/drug therapy , Neoplasms/genetics
...